Current Issue : July-September Volume : 2023 Issue Number : 3 Articles : 5 Articles
In recent years, soft pipeline robot, as a new concept, is proposed to adapt to tunnel. The soft pipeline robots are made of soft materials such as rubber or silicone. These materials have good elasticity, which enhance the adaptability of the soft pipeline robot. Therefore, the soft pipeline robot has better performance on deformability than rigid robot. However, the structure of tunnel is complex and varied that brought challenges on design structure of soft pipeline robot. In this paper, we propose soft pipeline robot with simple structure and easy fabrication, which can be realized straight, turning motion in a variety of tunnels with different diameters. The soft pipeline robot composed of two types of structure, which are expansion part and deformation part. Front and rear deformation part for bending and position fixation, and middle expansion part for elongation, so the pipeline soft robot can be moved in various structures of tunnels. Moreover, the locomotion ability and adaptability in tunnel are verified by simulating on software. The structure of chamber proposed in this paper can guide the design method of soft pipeline robot....
With the rapid development of the Internet of Things (IoT), the logistics and transportation industry is booming. At the same time, with the advancement of AI technology, intelligent logistics is also gradually emerging, and the purpose of intelligent logistics is to use different types of automatic guided transport machines to replace people to handle and move products. At the same time, with the help of big data, cloud computing, artificial intelligence, sensor technology, and other technologies, we can achieve logistics automation. However, the current logistics robot creation platforms are diverse, which makes intelligent logistics robots diverse in variety and wide in application and also makes the creation and use of robots more challenging. Robot Operating System (ROS) is an open-source software platform that supports programming in multiple languages and has excellent adaptability. In addition, most of the currently used path planning focuses on a single target point, which is insufficient to support the current needs of multitasking in intelligent logistics. Therefore, this paper aimed to design an intelligent logistics management system based on ROS robot and proposed to use the A-star algorithm to calculate the shortest path of the robot so as to achieve the optimal path. In the simulation experiment, 20 ROS robots were selected and divided into two groups. In the logistics warehouse of different transportation nodes, 20 ROS robots were set up to transport goods of different weights in the experiment, and the transportation data were collected at last. The final simulation results have shown that the power consumption and response delay performance of the ROS robot are good, and the logistics transportation speed is significantly improved. In addition, compared with the traditional transportation method, the daily transportation weight of each robot is up to 310.1% and the monthly profit is up to 171%, which shows that the intelligent logistics management system designed in this paper is more efficient in logistics and transportation and can bring more profits....
Autonomous sailing robots have attracted much attention, but challenges arise due to the sailing tests require an environment with both aerodynamic and hydrodynamic fields and a sufficient number of sailing robots in readiness. A remotely accessible platform with the advantages of low cost, easy operation and high efficiency is the preferred method to solve this dilemma. Consistent with this goal is the design of Sailboat Test Arena (STAr), a remotely accessible platform for sailing robot design verification, autonomous algorithms validation and sailing control practices. All three parts require extensive testing in real water environments. Hereby, for testers around the world, STAr can be accessed without time difference. A variety of local and remote tests have been conducted in the STAr platform at various location around the world. The results show that STAr is a remotely accessible and effective tool in data collection and skill transfer. With continuous adoption and optimization, STAr will continue to serve as a tool to further promote low-cost, high-efficiency and diverse sailing research, and provide opportunities for more people to experience sailing....
With the development of robot technology, inspection robots have been applied to the defect detection of large tanks. However, the existing path planning algorithm of the tank bottom detection robot is easy to fall into the local minimum, and the path is not smooth. Besides, the positioning of the tank bottom detection robot is not accurate. This article proposes a path planning and location algorithm for the large tank bottom detection robot. Specifically, we design a preset spiral path according to the shape of the tank bottom, and a rotating potential field (RPF) near the obstacle is added to avoid the problem of path planning falling into a local minimum. We obtained accurate and smooth planning results. Compared with the state-of-the-art, the RPF method reduced the average RMSE by 9.49%. In addition, by measuring the acoustic emission distance, the three-point positioning algorithm can be used to achieve the calculation of the robot position detection in the proposed method, and the average positioning error on the spiral path is only 0.0748 ± 0.0032....
Efficient and accurate state detection of transmission cables is an important means to ensure reliable transmission. Aiming to realize fast and efficient transmission cable state analysis with the help of a binocular vision tool on a loop dismantling robot, this paper proposes a transmission cable state recognition method combining motion control and image segmentation technology. In this method, the fuzzy PID control method is adopted to ensure that the wire removal robot can realize high-precision and rapid response control and effectively improve the collection quality of the cable image sample set. Meanwhile, aiming to achieve faster and more efficient data acquisition and state analysis, the state analysis model is sunk to the edge side, and the cable state detection and recognition model is constructed based on the fast RCNN model at the edge of the network to realize the in-depth extraction of feature information, enhance the transmission cable state recognition effect of the state detection model, and improve the response analysis speed of the model. The simulation results show that the accuracy of the proposed method is 97.54%, and its calculation time is 1.034 s, which can effectively realize the analysis and research of transmission cable state under complex working conditions....
Loading....